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Abstract

This paper studies delegated project choice without commitment: a principal and

an agent have conflicting preferences over which project to implement, and the agent is

privately informed about the availability of projects. We consider a dynamic setting in

which, until a project is selected, the agent can propose a project, and the principal

can accept or reject a proposed project. Importantly, the principal cannot commit to

his responses, and cannot implement a project unless it is proposed. In this setting, the

agent has an incentive to hold back on proposing projects that the principal favors so

that the principal approves a project favored by the agent. Nevertheless, the principal

achieves his commitment payoff in an equilibrium of the game in the frequent-offer limit.

This high payoff equilibrium showcases the art of waiting and contrasts with Coasian

logic: by giving proposer power to the agent, the principal can credibly commit to

rejecting his dispreferred projects until later in the game, giving the agent an incentive to

propose principal-preferred projects earlier on. We apply these results to the economics

of organization. In particular, these results suggest that to curb a manager’s empire

building plans, eliciting proposals from her “bottom-up” might be better than issuing

“top-down” commands.
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1 Introduction

This paper considers a principal-agent problem with the following two features: (i) the

agent knows what actions or “projects” are feasible and the principal does not, and (ii)

the interests of the two parties are not aligned. Such principal-agent problems abound.

Consider the interaction between a CEO (principal) of a firm and a manager (agent).

The manager may be better informed about what actions the firm can undertake, and

unlike the CEO, is motivated by empire building. In such cases, the CEO cannot

blithely assume that the manager selects actions purely for shareholder interests.

Another example is that of an antitrust authority deciding which mergers to approve:

It only wants to approve those mergers that enhance efficiency or consumer welfare,

but firms would like to propose only those mergers that increase industry profits. In

such settings, what should the principal do?

These issues have been studied in the literature on project selection problems,

initiated by the seminal work of Armstrong & Vickers (2010) and Nocke & Whinston

(2013). The dominant approach presumes that the principal can commit to which

projects he would accept in a one-shot interaction. But in many settings, the principal

may be unable to commit, particularly if projects can be proposed across several rounds.

If the agent does not propose any project that the principal deems acceptable, the

principal may then infer that such projects are infeasible and capitulate. Anticipating

this reaction, the agent may then wish to hold back on proposing projects that the

principal finds acceptable. How well can the principal do and can he obtain his

commitment payoff?

We investigate this question in a dynamic framework. The agent is privately

informed about which projects are feasible at time 0. In each round t P t0, 1, 2, . . .u,

the agent can propose a project that is feasible or stay silent; if a project is proposed,

the principal can accept or reject it. This process continues until a project is accepted—

in which case, players obtain payoffs from that selected project— or no proposed

project is ever accepted, so all players obtain payoffs from the status quo. We consider

the frequent-offer limit of this model, a sequence of games where the period length

vanishes.

In such a setting, one may anticipate that the principal would suffer a significant

loss of payoffs relative to the (static) commitment benchmark: after all, given the logic

sketched above, the principal may capitulate when no acceptable project is proposed.
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Moreover, our extensive form endows the agent with proposal power : The principal

is effectively giving up bargaining or proposal power, so even complete-information

intuitions suggest that the principal will do poorly in the dynamic game. Our main

result, informally stated, is

Theorem. In the frequent-offer limit, the principal attains his commitment

payoff in an equilibrium of the game.

The key idea underlying our main result is that endowing the agent with the right

to propose, along with restricting the principal’s action to accepting or rejecting a

proposed project, circumvents the principal’s commitment problem. Our high payoff

equilibrium stipulates that the agent and the principal wait for many rounds before

respectively proposing and accepting any project that the agent greatly prefers to other

projects and the principal disprefers (but prefers to the status quo). We show that

this behavior is sequentially rational, even at histories where the principal attributes

probability 1 to the agent only having such projects. If the agent proposes such

projects earlier than specified, the principal believes that the agent must have other

projects at her disposal, and rejects the proposal. Such “punishment through beliefs”

incentivizes the agent not to propose such projects earlier than stipulated and as such

solves the principal’s commitment problem. Because the agent anticipates such delays

to get her preferred projects approved, she is willing to propose, as in the commitment

benchmark, feasible projects that the principal prefers (and she may disprefer).

We observe that it is essential that the agent has proposal power for the com-

mitment problem to be solved. By contrast, if the principal were the one making all

the offers, Coasian forces would take over, resulting in him granting full discretion to

the agent. It is also crucial that the principal cannot implement projects unless the

agent proposes them. Otherwise, at a history where the principal believes that only

his dispreferred projects are available, he would implement them himself.

We view this finding to be of more than just theoretical interest. It suggests

a gain to organizations from allowing the agents—be managers, or employees—to

propose projects rather than issuing “top-down” commands from the principal. One

may envision that such “bottom-up” organizational structures emerge to motivate the

agent, as implemented projects follow their initiative as proposed in Aghion & Tirole

(1997). Our work also suggests that antitrust authorities, venture capital boards, and

grant funding agencies may gain from allowing the agent to be the one to propose

projects flexibly rather than constraining the agent to propose only certain projects.
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We also explore what may happen when the principal and the agent interact in

ways other than the agent always proposing and the principal accepting or rejecting

these proposals. We study a general class of delegation protocols and compare these

under commitment; i.e. if the principal could commit to a strategy within a protocol.

We show that the delegation protocol we study does as well as any delegation protocol

under commitment, and always achieves the payoff from the best static stochastic

mechanism. When there are only two possible projects, we show that this commitment

benchmark is always attained in an equilibrium; with more than two possible projects,

some additional assumptions are needed to achieve the commitment benchmark

without commitment.

The rest of the paper is organized as follows. We first present the related literature.

Section 2 introduces the setup, describes the sequential delegation game, and establishes

a commitment benchmark. We present our main result in Section 3 which exhibits

the main forces and the intuition behind them in the cleanest way. We establish a

commitment benchmark as an upper bound for the principal’s payoff and our main

result shows that the commitment payoff is always attained in an equilibrium of the

game. In Section 4, we include the general analysis for N projects. There, we work

in a class of delegation protocols and show that our sequential delegation game is an

optimal protocol under commitment. We also extend our main result beyond two

projects under some regularity conditions. Section 5 concludes the paper.

1.1 Related Literature

Our paper studies a delegation problem in a project selection setup. This problem is

studied by Armstrong & Vickers (2010) in a static setup. In their work, the formal

authority to choose the project lies with the agent but the principal can restrict the

set of projects the agent can choose from. This is equivalent to the principal being

able to commit to a deterministic mechanism. In contrast, our game is dynamic, with

the agent making proposals, and we use the optimal stochastic mechanism as the

commitment benchmark. We show that this commitment payoff can be attained in an

equilibrium of our game.1

1Nocke & Whinston (2013) study a similar problem in a static setup, in the context of mergers.
An antitrust authority can commit ex-ante to its merger-approval rule. However, this is not a direct
static counterpart of our setup. There are multiple firms (agents) here, and given the set of permitted
and feasible mergers, the implemented merger is the result of a bargaining process among firms.
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In Aghion & Tirole (1997), the uncertainty is about the payoffs from projects,

rather than their feasibility. Both formal authority to make decisions, and real

authority, where the agent’s proposals are accepted by the principal, can incentivize

the agent to exert effort to learn the payoffs. Although our setup is quite different, the

agent having real authority in their paper is similar to the agent having the control

over proposals in our model. In our work, the principal can only implement what the

agent proposes, so even though the he has the ultimate authority to make decisions,

agent has significant real control over the decision.

Our setup is one that involves hard evidence, since the the agent’s private in-

formation is about the feasibility of decisions, and she can only propose available

projects. This is an important way in which our paper differs from some of the

broader literature on delegation starting with Holmström (1984), and more recently,

Alsonso & Matouschek (2008). They also study a joint decision problem where the

principal has the formal authority to take decisions but the agent possesses private

information relevant to decision-making. In these models, if the principal can commit

to a decision rule as a function of the agent’s report, then the formal allocation of

authority is irrelevant. This is because any type can imitate the report of another.

So, the optimal mechanism can be implemented by constrained delegation, where the

principal delegates decision-making to the agent, but restricts her to choose from a

delegation set.

In contrast to this, in our setup, even if the principal can commit, the optimal

static mechanism wouldn’t, in general, be equivalent to choosing a delegation set. This

is because in our commitment benchmark, since the agent can only include available

projects in her report, this helps convey her private information more effectively,

rather than if she simply chooses an available project from a delegation set. So the

principal making decisions as a function of the agent’s report results in more effective

communication of agent’s private information.

An alternative approach in the project selection literature is to model the interac-

tion as a cheap talk game where the principal lacks commitment power, as in Che,

Dessein, & Kartik (2013) and Schneider (2015). Che, Dessein, & Kartik (2013) finds

that in the presence of a bias regarding the outside option, the agent tends to propose

unconditionally better projects for the principal to secure the approval for implemen-

tation. As its dynamic extension, Schneider (2015) finds that the dynamic interaction

allows for different equilibrium outcomes. It characterizes a mixing equilibrium where
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the agent randomizes between pandering and not, and a waiting equilibrium similar to

ours in spirit where the agent waits to persuade the principal that the unconditionally

worse project has a better payoff realization. This is the paper that closest to ours.

The key difference is that our work establishes a commitment benchmark and for the

case of two projects (and for N projects, under some conditions), characterises the

equilibria that achieves the commitment payoff.

Our paper also relates to the literature on mechanism design with hard evidence,

starting with Green & Laffont (1986) and Bull & Watson (2007). In these papers, the

setting is endowed with an evidentiary structure under which different mechanisms are

compared and Revelation Principles are established. We start with a type dependence

of evidentiary actions in delegation protocols and establish an evidentiary structure.

Static mechanisms with this evidentiary structure serve as an upper bound for any

outcome that can be implemented with any mechanism with this particular type

dependence of actions. The Revelation Principle from these papers does not hold

directly in ours because the agents’s action also restricts what the principal can choose,

and evidentiary actions can be taken at multiple nodes, which these papers do not

allow. The paper closest to our mechanism design analysis is Deneckere & Severinov

(2008) which has a Revelation Principle that allows for evidentiary actions at multiple

nodes. However, this result does not follow directly in our setting either. If the agent

is the proposer, the principal cannot implement a project she does not propose, so

evidentiary actions have significance beyond providing verifiable information.

2 The Model

A principal (he) and an agent (she) jointly choose a project to implement. A project

is a pair of payoffs pα, πq P R2
``, where α is the agent’s payoff from implementing

the project, and π is the principal’s. There are two possible projects, denoted by

N “ tg, bu: a good project g with payoffs pαg, πgq and a bad project b with payoffs

pαb, πbq. The players are expected utility maximizers, and have conflicting preferences

over the projects: πg ą πb ą 0 and αb ą αg ą 0.

The challenge is that not every possible project may be available to implement,

and only the agent knows which projects available: her type represents the set of

available projects, and is her private information. The agent has four possible types:

• E “ H, the empty type with no available projects;
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Agent’s payoff

Principal’s payoff

pαg, πgq

pαb, πbq

πg

αg

πb

αb
0

Figure 1: The project space with the principal-preferred good project pαg, πgq and the
agent-preferred bad project pαb, πbq.

• G “ tgu, the good type with only the good project available;

• B “ tbu, the bad type with only the bad project available;

• M “ tg, bu, the mixed type with both projects available.

The set of all possible types is denoted by S ” 2N “ tE,G,B,Mu.2An element

of S, or a possible type, is denoted by S. The agent’s type is drawn from S and µS

denotes the probability of type S.

We now describe how the principal and the agent solve the joint decision problem.

We refer to their interaction as the sequential delegation game, which proceeds as

follows. Time is discrete and the principal and the agent have a common discount

factor δ P p0, 1q. In each period t “ 0, 1, 2, . . ., the agent makes a proposal and the

principal responds to this proposal.

The set of actions, or proposals available to the agent, is type-dependent. If the

agent is of type S, then at any time period t, the agent can make proposals from the

set AS “ ttiu|i P Su Y H. This means that in any t, the agent of type S can either

propose exactly one available project i P S, or stay silent.3 For the principal, if at any

t, project i P N is proposed by the agent, he can either accept i, or reject it. If the

agent was silent and did not propose anything, then the only possible action for the

principal is to reject.

2This is assuming that µ has full support on 2N ; this is not essential for our results.
3For type E, AE “ H, so staying silent is the only option.
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If the principal rejects a proposed project i, or if the agent is silent, both players

obtain a payoff of 0 in that period and the game proceeds to the next period. If the

principal accepts the proposal of project i at time t, the game ends: the principal’s

payoff is δtπi and the agent’s is δtαi. We focus on the case of δ Ñ 1, which we interpret

it as the frequent-offer limit of the game.

Nature

draw Agent’s
type S wp µpSq

t “ 0

Agent of type S

stay
silent

t “ 1

..
.

. . .

propose i P S

Principal

accept

pαi, πiq

reject

t “ 1

Agent of type S

stay
silent

t “ 2 . . .

..
.

propose i P S
. . .

Figure 2: Timeline of the sequential delegation game.

Thus, in the sequential delegation game, for any time period t, the set of all

possible histories at the beginning of period t is Ht “ pN Y Hqt. This captures the

fact that if we are at t, for any t
1

ď t ´ 1, we can have two cases: (i) a project i P N
was proposed and rejected, or (ii) Agent was silent, and nothing was proposed, so

there is nothing for the principal to accept. This is denoted by H. An element of Ht is

denoted by ht. If the agent is of type S, her strategy maps any history to a probability

distribution over ttiu|i P Su Y H. A principal’s strategy maps any history, and a

proposal of project i at that history to a probability of accepting i. If agent is silent,

then principal’s only possible action is to reject. Our equilibrium concept is Perfect

Bayesian Equilibrium; both players play sequentially rationally and the principal’s

beliefs about the agent’s type are updated according to Bayes’ rule whenever possible.

3 The Benefits of Giving Up Control

This section presents our main result. We study how well the principal can do in an

equilibrium of our sequential delegation game, despite being uninformed and lacking

proposal power. We first establish a commitment benchmark that acts as an upper

bound for what the principal could achieve if he could commit to a strategy in the
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sequential delegation game. Then, our main result shows that this commitment payoff

is, in fact, attainable in an equilibrium of the sequential delegation game, even though

the principal has no commitment power. Finally, we highlight the importance of giving

up control over making proposals; in a game where the principal makes proposals, it

may not be possible to attain the commitment payoff.

3.1 Commitment Benchmark

We first define a class of static, stochastic mechanisms with type-dependent message

spaces, that we refer to as mechanisms hereafter. In Section 4.1, we prove that this

class of mechanisms is indeed an upper bound to what the principal can achieve if he

can commit to a strategy in the sequential delegation game. For now, we will take this

fact as given.4 In a mechanism in this class, the message space is type dependent, and

the set of messages that a type S of the agent can send is defined to be MpSq “ 2S.

So, each type can report only subsets of her available projects as a message in the

mechanism.5 A mechanism is a tuple pM, qq, where M “
Ť

SPS MpSq is the set of all

possible messages, and q : S Ñ ∆pS Y Hq is the outcome function. Therefore, when S

is reported, only projects in S can be implemented, or no project at all, as captured

by H. If no project is implemented, the players obtain the status quo payoff, which is

zero for both the principal and the agent. For any type S P S and any project i P S,

qSi represents the probability of implementing project i when the type S is reported.6

We define a mechanism to be incentive compatible (IC) if no type finds it optimal to

report a strict subset.

Every mechanism determines an allocation, which is a vector tqSiuSPS,iPS. A

feasible allocation is one where for each type S, we have: qSi P r0, 1s for each i P S and
ř

iPS qSi ď 1. The principal-optimal mechanism maximizes the principal’s payoff by

choosing implementation probabilities for projects in each type, subject to feasibility

and incentive compatibility constraints.

4It is in fact a tight upper bound in the sense that for any mechanism, there exists a strategy
in our sequential delegation game such that commitment to this strategy gives the principal the
same expected payoff as the mechanism as δ Ñ 1. So, this upper bound is equivalent to commitment
within the sequential delegation game. We show this in Section 4.1. There, we also show that this
class of mechanisms actually acts as an upper bound for a very general class of interactions between
the principal and the agent, not just the one where the agent makes all the offers.

5This includes the empty set.
6So, 1 ´

ř

iPS qSi is the probability of not implementing any project when S is reported.
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max
qGg ,qBb,qMg ,qMbPr0,1s

µGqGgπg ` µBqBbπb ` µMqMgπg ` µMqMbπb

subject to
ř

iPS qSiαi ě
ř

i1
PS1 qS1 i1αi1 (ICSS1 )

qMg ` qMb ď 1

where ICSS1 denotes the IC constraint for type S to not report type S 1 Ď S. The

second constraint is just the feasibility constraint for the implementation probabilities

when the mixed type is reported. Before we solve for the principal-optimal mechanism,

we make a few simplifying observations about some properties that must be true for

an optimal mechanism.

Observation. No type finds it profitable to report the empty type, so

ICGE, ICBE, and ICME are all redundant.

Recall that corresponding to any report, the mechanism only implements project in

the report. So, the payoff from reporting the empty type is zero; it has no project,

so no project is implemented when it is reported. Since each project has strictly

positive payoffs for both players, each type of the agent gets a weakly higher payoff

by reporting her own type, than she does by reporting the empty type. Hence, the IC

constraints for the other types to not report the empty type, ICGE, ICBE, and ICME,

are all redundant.

Observation. In an optimal mechanism, we must have q˚
Mg ` q˚

Mb “ 1.

When the mixed type is reported, the probabilities of implementing the good and

the bad projects must sum up to 1 in an optimal mechanism. Suppose not, i.e.

q˚
Mg ` q˚

Mb ă 1. Then, we can increase both q˚
Mg or q˚

Mb slightly, and have new

implementation probabilities pq˚˚
Mg, q

˚˚
Mbq ą pq˚

Mg, q
˚
Mbq and q˚˚

Mg ` q˚˚
Mb ă 1. It must be

the case that the IC constraints involving the mixed type still hold, as

q˚˚
Mgαg ` q˚˚

Mbαb ą q˚
Mgαg ` q˚

Mbαb ě qGgαg

q˚˚
Mgαg ` q˚˚

Mbαb ą q˚
Mgαg ` q˚

Mbαb ě qBbαb.

From these new implementation probabilities, the principal obtains a strictly higher

payoff. So, q˚
Mg ` q˚

Mb ă 1 cannot be part of an optimal mechanism.
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Observation. The incentive compatibility constraint for the mixed type

to not report the good type, ICMg, is redundant.

We know from the previous observation that when the mixed type is reported, the

probabilities of implementing projects sum up to 1. It implies that the payoff of the

mixed type, from reporting truthfully, will be at least αg. On the other hand, her

payoff from reporting the good type is at most αg as qGg P r0, 1s. Thus, the mixed

type is always weakly better off by reporting truthfully than by pretending to be the

good type, and ICMG, is redundant.

Observation. In any optimal mechanism, we must have qGg “ 1.

Since ICMG is redundant, and there is no type other than the nixed type that can

report the good type, therefore when the good type is reported, an optimal mechanism

must implement the good project with certainty.

Given the above observations, the problem of finding the optimal mechanism

reduces to that of choosing qMg and qBb to maximise the principal’s expected payoff,

subject to ICMB. This is because the other IC constraints are redundant, qGg “ 1,

and qMg ` qMb “ 1, so choosing qMg and qBb pins down the optimal mechanism.

The lone IC constraint, ICMB, represents the trade off that the principal faces

in implementing the good project with positive probability from the mixed type. If

qMg ą 0, the principal will have to set qBb ă 1, so that the mixed type doesn’t imitate

the bad type. We now define two mechanisms, and it turns out that one of them is

always an optimal mechanism.

Definition. The pooling mechanism implements the bad project from the agent’s bad

and mixed types: q˚
Gg “ 1, q˚

Bb “ 1, q˚
Mg “ 0, q˚

Mb “ 1.

The separating mechanism implements the good project from the mixed type and

the bad project from the bad type with an interior probability: q˚
Gg “ 1, q˚

Bb “
αg

αb
, q˚

Mg “

1, q˚
Mb “ 0.

It is easy to see that both these mechanism are IC. In the pooling mechanism, the

outcome when the type is mixed, is same as the outcome when the type is bad. In

both cases, the bad project is implemented with probability one. So, mixed type is

pooled with the bad. On the other hand, in the separating mechanism, the outcome

when the type is mixed is different from the outcome when the type is bad. In one
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case, the good project is implemented with probability one, and in the other, the bad

project is implemented with probability αg

αb
. So, this mechanism separates the mixed

and bad types.

Before stating our result about the optimal mechanism, we establish some notation.

Let λ “
µM

µB
be the likelihood ratio of mixed type compared to bad type, and

λ˚ “
p1´

αg
αb

qπb

pπg´πbq
.

Proposition 1. Either the pooling or the separating mechanism is always optimal.

a) When λ ă λ˚, the pooling mechanism is optimal.

b) When λ ą λ˚, the separating mechanism is optimal

c) When λ “ λ˚, any mechanism with qGg “ 1, qMg`qMb “ 1, and qMgαg`qMbαb “

qbBαb is optimal. In particular, both the pooling and separating mechanisms are

optimal.

The proof of the above result is in the appendix. To see the intuition behind

the result, recall that we only need to worry about ICMB. We can show that this

reduces the problem to: (i) whether the principal wants to separate the mixed and bad

types, as in the separating mechanism, or (ii) pool them, as in the pooling mechanism.

Consider the case where λ “
µM

µB
Ñ 8. Then it is as if, between the mixed and the

bad types, only the mixed type exists. In this case, it would be optimal to set qMg “ 1,

and therefore, qBb “ 0 bu ICMB. On the other hand, if µM

µB
“ 0, i.e only the bad type

exists, then it is optimal to set qBb “ 1. So it makes sense that if λ is high enough, the

separating mechanism would do better than the pooling mechanism. This is precisely

λ˚, the threshold in our result.

Now that we have solved for the optimal mechanism, we turn our attention back

to the sequential delegation game where the principal cannot commit to his responses.

In particular, we are interested in exploring how well the principal can do in equilibria

of the game when he is constrained by sequential rationality and whether he can

obtain his commitment payoff.
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3.2 Implementing the Commitment Benchmark as Equilib-

rium

In the sequential delegation game, the agent’s proposals are like reports of which

projects are available, somewhat like the mechanism. However, unlike the mechanism,

the principal cannot commit to his responses to the agent’s proposals here. This

therefore limits how effectively he can elicit the relevant information from the agent,

and we might expect a gap between the commitment payoff and what the principal

can achieve in an equilibrium of the game.

In the absence of commitment power, one might think that proposal power could

help the principal; he could provide the necessary incentives by effectively restricting

the choices of the agent. However, in our game, the principal lacks the ability to make

proposals as well! This translates into a reduced level of control over which project is

implemented, as he cannot implement something that the agent has not proposed. He

can only accept or reject a project proposed by the agent. The principal seems to be

at every possible disadvantage here.

Our main result however, contradicts the above intuition, and establishes that

there is always an equilibrium of the sequential delegation game where the principal

attains his commitment payoff in the frequent-offer limit. In particular, there is an

equilibrium where delay emerges as a costly signalling device for the agent and allows

for the separation of the mixed and the bad type. This equilibrium attains the optimal

commitment payoff when the optimal mechanism is separating. We will also argue

that the lack of proposal power in fact helps with this signalling through delay. We

now state our main result where, for each form that the optimal mechanism takes, we

describe an equilibrium that attains the payoff from this optimal mechanism in the

frequent offer limit.

Theorem 1. There is always an equilibrium of the sequential delegation game in which

the principal’s payoff approximates his commitment payoff in the frequent-offer limit,

as δ Ñ 1. On-path behavior in the equilibria that attain the commitment benchmark is

as follows.

a) (Pooling) When the pooling mechanism is optimal, λ ď λ˚, the pooling equilibrium

attains the principal’s commitment payoff: Each type of the agent proposes her

favorite available project at t “ 0. The principal accepts any proposal at t “ 0.
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b) (Separating) When the separating mechanism is optimal, λ ą λ˚, the separating

equilibrium approximates the principal’s commitment payoff:

˚ The agent’s good and mixed types propose the good project at t “ 0 and the

bad type stays silent until t˚pδq :“ mintt : αg ě δtαbu, at which point she

proposes the bad project.

˚ The principal accepts the good project at t “ 0 and the bad project at t˚pδq.

The details of the strategies and beliefs that constitute the pooling and the

separating equilibria are in the Appendix. Here, we focus on the more interesting

case; that of the separating equilibrium. We first argue that the on path behaviour

we described indeed attains the principal’s payoff from the separating mechanism. In

this equilibrium, on the equilibrium path, the mixed type and the good type both

propose the good project g at t “ 0 and it is accepted. So, since g is implemented, i.e.

proposed and accepted without delay, this replicates the implementation probabilities

of qGg “ qMg “ 1. In the mechanism, the bad project b is implemented with an

interior probability of qBb “
αg

αb
, and in the equilibrium is is implemented (proposed

and accepted) with a delay, at t˚pδq. By definition of t˚pδq, we have that as δ Ñ 1,

t˚pδq Ñ
αg

αb
. Thus, as δ Ñ 1, the principal’s payoff is the separating mechanism is

attained by the separating equilibrium.

t “ 0 t “ t˚

G : “g”

B : “H”

M : “g”

¨ ¨ ¨ “H” ¨ ¨ ¨ “H” ¨ ¨ ¨ “H” ¨ ¨ ¨“b”

Principal : tgu ¨ ¨ ¨ H ¨ ¨ ¨ H ¨ ¨ ¨ H ¨ ¨ ¨ tbu

Figure 3: The timing of the proposals and accepted projects on the path of separating
equilibrium of the sequential delegation game.

We now informally describe the separating equilibrium, and provide some intuition

behind the key forces that hold this equilibrium together. The principal’s strategy

involves accepting the g whenever proposed, and rejecting b whenever it is proposed

before the threshold t˚pδq. In fact, if b is proposed before t˚pδq, the principal’s strategy

is to reject not just this proposal, but any future proposal of b as well. More precisely,
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fix a history ht at the beginning of period t. Suppose there is a t
1

ă t such that along

ht, b was proposed at t
1

, and t
1

ă t˚pδq. Then, if b is proposed at period t following ht,

it is rejected. If b is proposed at t˚pδq, and has never been proposed before this, then

it is accepted.

This essentially means that a type that has b cannot get the principal to accept it

before t˚pδq. Rather, if such a type proposes b before t˚pδq, then the principal will

never accept b at any future time period. So, the mixed type faces a choice: it can get

g accepted right away, at t “ 0, or wait till t˚pδq to get b implemented. By definition

of t˚pδq, it (weakly) prefers to propose g at t “ 0. The bad type has no option but to

wait by staying silent till t˚pδq. At this point he proposes his only project, and it is

accepted.

Thus, delay emerges as a costly signalling device in equilibrium; it is used by

the bad type to signal that she indeed only has the bad project. But why does the

principal reject b at any history that involves b being proposed before t˚pδq? This is

because of his off-path beliefs. At any such history, he believes that it is the mixed

type with probability one. Thus, the agent gets punished by the extremal off-path

beliefs of the principal, if he ever proposes the bad project before t˚pδq.

However, ex-ante, it is not clear why this punishment through beliefs should be

possible. Even if the principal attaches probability one to the mixed type, why does

he find it optimal to always reject b given this belief? The agent still has control of

the proposals after all, and the principal cannot implement something she doesn’t

propose. In this case, even if the principal knows the agent has both projects, its not

obvious that he can make the agent propose g. The agent can just keep proposing b.

The intuition here is that in the complete information counterpart of our game,

where it is common knowledge that the agent is of mixed type, there exists an

equilibrium where, on path, the agent proposes g at t “ 0. Consider the following

strategies of the principal and the agent: the principal, irrespective of history, rejects

b, and accepts g. The agent, irrespective of history, proposes g. In particular, at any

history ht, if the agent proposes g and it is rejected, then at this off-path history

ht`1 “ pht, bq, the agent’s strategy is to propose g. It is easy to see that no party has

a profitable one-shot deviation. For the principal, at any time period, if b is proposed,

by rejecting it, he expects g to be proposed in the next period, which he would then

accept. So, if he is sufficiently patient, it is optimal to reject b. For the agent, at any

time period, if she proposes b, it would be rejected, and she would propose g in the
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next period, which would be accepted. So, her payoff from this deviation is δαg. If

she doesn’t deviate and proposes g in the current period, it is accepted and she gets

αg. Thus, the strategies constitute an SPE.7

It is this equilibrium that our analysis leverages. Consider a history ht, where b was

proposed and rejected at t
1

ă t˚pδq along this history. In the separating equilibrium, if

the agent’s type is mixed, her strategy is to propose g following such a history. So, if

b is proposed at t ă t˚pδq, the principal believes it is the mixed type with probability

one, and therefore expects a proposal of g in the next period if he rejects b. This

makes rejection of b sequentially rational for the principal at any such history, and

holds this equilibrium together.

We have therefore argued that off-path beliefs can be used to exploit a complete

information equilibrium, and separate the mixed type from the bad. We now argue

that there is another force: lack of proposal power, that makes this leveraging this

complete information equilibrium possible. Consider an alternative to our sequential

delegation game, where, in each period, the principal makes an offer in form of a

restriction set, which is a subset R of N that the agent is allowed to choose from. 8 If

the agent’s type is S, she can either implement a project i P R X S, in which case the

game ends, or not implement anything and reject R altogether. In this case the game

moves to the next period, and the principal offers another restriction set.9

The complete information counterpart of this new game, where it is common

knowledge that the agent’s type is mixed, also has an equilibrium where, along the

equilibrium path, the good project is implemented at t “ 0. The strategy of the

principal is to set R “ tgu at any history, and the agent’s strategy is to always accept

any project that’s allowed. It is easy to verify that these strategies constitute an SPE.

However, it turns out that in the new principal-offer game, this complete infor-

mation equilibrium cannot be exploited! When the separating mechanism is optimal,

there is no equilibrium of this game that attains the optimal commitment payoff.

This is surprising, since we might think that the principal having control of proposals

means that he can exert greater influence over what is implemented. But there is a

7The discreteness of the offer space is important here. Consider the setting from Rubinstein (1982),
but with one party making all the offers. Then, in the unique equilibrium, this party captures the
entire surplus. However, as Van Damme, Selten, & Winter (1990) shows, any split can be supported
if the offer space is discrete. A similar reasoning is at play here.

8R can be H, in which case, the agent has no choice and the game proceeds to the next period.
9We show in Section 4.1 that the commitment benchmark we established also serves as an upper

bound for what the principal can achieve by committing to a strategy in this alternative game.
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trade-off between control and sequential rationality here.

To understand the intuition behind this, suppose the principal attempts to replicate

the separating mechanism by setting R “ tgu at all t ă t˚pδq. At t˚pδq, he sets

R “ tg, bu. So the mixed type indeed finds it optimal to accept g at t “ 0. But this

strategy of the principal is not sequentially rational; at t “ 0, if g is not accepted,

the principal knows it is the bad type, and therefore would permit b in the very next

period. The sequential rationality constraint actually prevents him from waiting till

t˚pδq before allowing the bad project. Also, since non-acceptance of g is on-path,

there is no scope for the principal to form extremal off-path beliefs, and leverage the

equilibrium of the complete information game. The limited action set of the agent

therefore hurts the principal, and makes punishment through beliefs harder to achieve.

In fact, Li (2022) establishes that this Coasian force is prevalent in any equilibrium

of this alternative game, and the unique equilibrium outcome is the principal setting

R “ tg, bu at t “ 0.

So, there are various forces that work here and it is their combination that helps

with the attainment of commitment payoff in an equilibrium of our game.

4 A General Model with N projects

When there are two possible projects, we showed that the payoff from the static

commitment benchmark can always be achieved in an equilibrium of the sequential

delegation game. However, when we move beyond two projects, it is not clear if the

commitment payoff can be achieved in equilibrium.

There are potentially two reasons why this could happen: (i) there is a wedge

between the static stochastic mechanism and what can be achieved by commitment

to a strategy in the dynamic game, or (ii) a sequential rationality consideration that

impedes the principal from achieving his dynamic commitment payoff in an equilibrium

of this game. We want to differentiate between these two forces. If commitment payoff

in the sequential delegation game cannot be achieved, is it because of a limitation

of the extensive form, as in (i), or is it because the principal cannot commit to his

strategy, as in (ii).

Even with two projects, we might wonder if the principal can do better if the

principal and the agent used an alternative extensive form to solve the joint decision

problem of implementing a project. We therefore also want to explore the merits and
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demerits of the sequential delegation game, relative to other extensive forms. We

want to understand if our sequential delegation game has any limitations that other

extensive forms don’t. But to answer this question, we need to define precisely what

the general space of extensive forms is, and how we are comparing them.

In this section, we consider a general setting where there are N ą 2 possible

projects, and the interaction between the principal and the agent may take one of

several possible forms. The set of all possible projects is now N ” t1, 2, . . . , Nu where

project i corresponds to pαi, πiq. As before, only the agent knows which projects are

available; her type is S Ď N representing the set of available projects. The agent’s

type is drawn from S ” 2N according to the probability distribution µ : S Ñ r0, 1s.

We refer to the different extensive forms we consider as delegation protocols.10

We first define a general class of delegation protocols. We then show that the

class of mechanisms that we defined in Section 3.1 serves as a general commitment

benchmark in this setting. For this, we prove a Revelation Principle and show that any

outcome that can be achieved in any extensive form can be achieved by a direct, static,

and stochastic mechanism with type-dependent message spaces. Furthermore, we show

that for the sequential delegation game, this upper bound is tight. More precisely,

for any static mechanism, there exists a commitment strategy of the principal in the

sequential delegation game that attains the same payoff as δ Ñ 1. So, the sequential

delegation game imposes no constraints beyond sequential rationality. Finally, we

provide an example of a protocol where, even with the ability to commit to a strategy,

the principal is not always able to achieve the optimal commitment payoff from a

static mechanism. This highlights that some protocols may impose constraints beyond

sequential rationality.

4.1 Protocols

We define a delegation protocol to be an extensive form game that specifies the

proposer, and what they are allowed to offer at any history. Formally, at any history

ht, the the protocol specifies the proposer, P phtq and the set of permissible offers,

10We can think of them as capturing the different institutional settings that the principal and the
agent might interact in. The sequential delegation game is one possible delegation protocol. Another
possible protocol is the principal specifying the set of projects from which the agent is permitted to
choose in each period.
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Ophtq Ď 2N , so any offer Ophtq is a subset of N .11 When an offer is made by the

proposer, the other party responds by either accepting a project in the offer or rejecting

the offer altogether. A history is a sequence of offers that have been rejected. 12

The set of actions feasible for the agent at any history is type-dependent; if she is

the proposer, she can only include available projects in her offer, and if the principal is

the proposer, she can only accept an available project. Formally, if, at ht, the proposer

is the agent, and the agent’s type is S, then we must have Ophtq Ď S. On the other

hand, if the proposer is the principal, the offer Ophtq can be any subset of N that’s in

Ophtq, but the agent can only accept a project in Ophtq X S.

A delegation protocol is therefore simply a dynamic game with type-dependent

action space for the agent at any history. If any project from an offer is accepted,

the game ends, and players get their discounted payoffs; otherwise the game proceeds

to the next period. Our equilibrium concept is Perfect Bayesian Equilibrium; both

players play sequentially rationally and the principal’s beliefs about the agent’s type

are updated according to Bayes’ rule whenever possible.

4.1.1 Revelation Principle

We consider the class of mechanisms defined in Section 3.1, where the message space

is type-dependent, so a type can report only subsets of her available projects. A

mechanism q maps any report to a probability of implementation of each project

in that report. These are mechanisms with evidence, as each type is only able to

report a subset of the projects she has. The message space here satisfies the normality

condition from Bull & Watson (2007)

We now prove a Revelation Principle for this setting; we show that any social

choice function implementable in any protocol is also implementable by a mechanism

in this class. We first define a social choice function and an induced social choice

function.

Definition. A social choice function (SCF) is a function f that maps a set S Ď N , to

11An offer can be H, this can be interpreted as the party making the offer permitting no project
to be chosen by the other, like the agent choosing to stay silent in the sequential delegation game. If
the offer is H, then the party responding to the offer has no option but to reject it, as there is no
project to accept.

12Tying this definition back to our sequential delegation game, it is the protocol where at any ht,
P phtq is the agent, and the set of permissible offers is Ophtq “ O “ ttiu|i P N u, i.e. the singleton
subsets of N .
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a probability of implementation of each project in S, where fSpiq denotes the probability

of implementing project i P S from type S.

An induced social choice function is defined to be an SCF that is induced by a

strategy of the principal in a protocol and a best response to that strategy. In order

to better understand what an induced SCF is, fix a protocol. Consider any strategy

of the principal in this protocol and any best response of the agent to this strategy.
13 This pair of strategy and best response induce a probability distribution over

outcomes for each type S, where an outcome pi, tq denotes project i being implemented

at time period t. For any type S and project i P S, we can condense the discounted

probabilities of implementing i at different histories into a single probability, and this

probability is denoted by f I
Spiq.14 The induced SCF is then the function f I that maps

any type S to a probability f I
Spiq of implementation of each i P S.15

Proposition 2. For any delegation protocol and any SCF f I induced by a strategy of

the principal and a best response of the agent, the static mechanism f I is incentive

compatible.

Proof. Fix a delegation protocol and an induced SCF f I in the protocol. Recall, from

our description of protocols, that at any history, any action that is available to a type

S 1 is also available to S, where S 1 Ď S. This is because within the constraints of what

the protocol permits, anything that S 1 can propose or accept, S can as well since S

has all the projects S 1 has. Since the induced SCF comes from a best response of

the agent, it must be that the payoff for S from f I
S is weakly better than the payoff

from f I
S1 , which is what S would get if she imitated the best response of S 1. Thus, the

incentive compatibility in the mechanism, which requires that no type should find it

optimal to report a strict subset, is satisfied.

This result highlights an important point. In the two-project case, he principal can

always attain the commitment payoff in an equilibrium of the sequential delegation

game. The above Revelation Principle tells us that this commitment benchmark in

fact serves as an upper bound for what the principle can achieve with commitment,

13This pair does not need to constitute an equilibrium, we can think of the principal as being able
to commit to a strategy.

14For example, if i P S is implemented with probability 1
2 at t “ 0, and with probability 1

2 at t “ 1,
then f I

Spiq “ 1
2 ` δ 1

2 .
15The details of collapsing the probability of various outcomes involving i into a single probability

can be found in the Appendix A.3.
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and therefore in an equilibrium of a very general class of protocols. So, if the principal

lacks commitment, and we have two projects, there is no equilibrium of any other

protocol in this class that can do better than the principal-optimal equilibrium of the

sequential delegation game.

Note that the standard Revelation Principle from Bull & Watson (2007) does not

follow directly here as we do not start out with a fixed evidentiary structure under

which we compare various static and dynamic mechanisms. Instead, we start out with

type-dependent evidentiary actions, which can be taken at multiple nodes. Moreover,

the proposal of the agent also limits what the principal can choose when the agent is

the proposer, which is not a feature of standard mechanisms with evidence.

We now argue that as δ Ñ 1, any SCF that is implementable in a static, stochastic

mechanism is implementable in the sequential delegation game if the principal is able

to commit to a strategy. It means that our sequential delegation game is an optimal

protocol under commitment and sequential rationality is the only restriction it imposes

on what is attainable in equilibrium.

Theorem 2. Fix a social choice function f . There exists a strategy of the principal

and a best response of the agent in the sequential delegation game such that the induced

SCF from this strategy and best response approaches f as δ Ñ 1.

We provide the proof in the Appendix, but the idea is to fix an SCF f and

construct a corresponding strategy in the sequential delegation game:

˚ According to this strategy, the first N time periods, t P t0, 1, . . . N ´ 1u, are

reserved for information elicitation where the agent proposes the available

projects in a particular order. Proposals in the first N periods are analogous

to a report in the mechanism, and since the agent can only propose projects

she has, this captures the fact that a type can only report her subsets in the

mechanism.

˚ In time periods t ą N ´ 1, the projects that were proposed in the first N ´ 1

periods are proposed again, and accepted with probabilities such that the agent

finds it optimal to report all her projects in the first N periods. As δ Ñ 1, these

probabilities approach the implementation probabilities from the mechanism and

the principal’s payoff from this strategy approaches his payoff in the mechanism.
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This result tells us that the sequential delegation game imposes no constraints

as δ Ñ 1 beyond sequential rationality. So, if the principal can commit to a strategy,

but is constrained by the extensive form of the sequential delegation game, i.e. has to

operate in a setting where the agent makes proposals, and he can merely respond to

them, then this is not really a constraint. Even if he could choose the extensive form

from a very general class of extensive forms, and then also commit to his strategy in

that extensive form, he cannot do any better.

In contrast, there exist delegation protocols where the ability to commit to a

strategy may not be enough to attain the commitment payoff from the optimal static

mechanism, which is the common commitment benchmark for all the protocols we

consider.

Consider the delegation protocol where, in each period, the principal makes

proposals by choosing a restriction set, which is any subset O of N that the agent is

allowed to choose from. So, at any history ht , P phtq is the principal, and Ophtq “

O “ 2N . If the agent’s type is S, she can either implement a project i P O X S, in

which case the game ends, or not implement anything and reject O altogether. In this

case the game moves to the next period, and the principal offers another restriction

set.

Now consider the example where there are three possible projects, N “ t1, 2, 3u,

and three equally likely types in the support of µ with S “ tt1, 2u, t2u, t2, 3uu. The

payoffs are:

π1 “ 8, π2 “ 3, π3 “ 1

α1 “ 3, α2 “ 8, α3 “ 9

The optimal mechanism is as follows:

• From type t1, 2u, project 1 is implemented with probability one

• From type t2u, project 2 is implemented with probability 3
8
.

• From type t2, 3u, project 2 is implemented with probability one.

We can show that there does not exist a commitment strategy for the principal in

this protocol that would attain the payoff from the above mechanism.

The details are in the Appendix, but the intuition is as follows: The construction

of the commitment strategy in the sequential delegation game (Theorem 2) involves
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eliciting information from the agent about her type through her proposals and condi-

tioning future responses on these initial proposals. Consider the following strategy of

the principal: he rejects any proposal except 1 at t “ 0. At t “ 1, he accepts project

2 only if project 3 was proposed at t “ 0, otherwise rejects 2 forever if it is proposed

before a certain threshold t˚.16

In the alternative delegation protocol, the agent can only accept or reject, and not

propose projects herself, and it limits the scope for information elicitation. Without

the ability to condition future implementation of projects on the agent’s own past

proposals, the principal cannot separate type t2, 3u from t2u.

4.2 Attaining the Commitment Payoff with N Projects

We now turn our attention back to the sequential delegation game and the possibility

of attaining attaining the commitment payoff in equilibrium here. It is natural to ask

whether our main result holds beyond two projects and we find that it is not clear

that this would always be the case.

While the number of possible projects does not alter the game itself or the

commitment benchmark, the problem significantly more complex. Even solving for the

optimal mechanism is difficult as it now includes IC conditions for each subset of each

type. As a result, the problem loses its tractability. In order to recover some of the

lost tractability, focus attention on a restricted class of parameters. More specifically,

we consider the model under three assumptions about the payoffs of the projects and

the types in the support of µ.

We show that these assumptions are sufficient conditions for existence of an

equilibrium of the game that attains the commitment benchmark. We also show

through an example that the conditions are not necessary and highlight another

signaling opportunity for the agent by proposing redundant projects.

Assumption 1. (Conflicting preferences) The set of projects N satisfies

π1 ą π2 ą . . . ą πN´1 ą πN ą 0;

αN ą αN´1 ą . . . ą α2 ą α1 ą 0.

16The construction is similar to the separating equilibrium from the two-project case.
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We start by assuming that the set of projects is such that the preferences of the

players are diametrically opposed. When there are two projects, the only alternative

to opposite preferences is identical preferences in which case the problem would be

trivial. Beyond two projects, however, there is an array of possibilities for conflicting

preferences. Under Assumption 1, the principal and the agent have exactly opposing

preferences.

Assumption 2. (Linear payoffs) Any two projects i, j ‰ 1 satisfy

π1 ´ πi

αi ´ α1

“
π1 ´ πj

αj ´ α1

.

We further simplify the complex incentives beyond two projects by Assumption 2

which requires all possible projects to lie on a line on R2
``.

Agent’s payoff

Principal’s payoff

pα1, π1q

pα2, π2q

pαN , πNq

¨ ¨ ¨

0

Figure 4: The project space with N ą 2 projects under Assumptions 1 and 2. We see
the conflicting preferences of the principal and agent, and the linear payoffs of the
projects.

Assumption 3. (Nested types) The probability distribution over the agent’s types µ

is such that for any S, S 1 P S with µpSq, µpS 1q ą 0, either S Ď S 1 or S 1 Ď S.

Assumption 3 requires the set of possible types to be nested in a way that a type of

the agent is either a subset or a superset of any other type. This assumption provides

a structure to possible types and simplifies the incentives. Under Assumption 3, there

can be at most one type with n projects for each n P t1, 2, . . . , Nu.
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Projects

Agent’s types

S3

4

S2

2

S1

1 53
0

Figure 5: The type space S with N ą 2 projects under Assumption 3 where project i
refers to pαi, πiq. The type space is nested such that if we take any two types, one
would be a subset of the other.

When the parameters N and µ satisfy Assumptions 1, 2, and 3, we refer to this

restricted type space with the restricted payoff structure as nested linear type space.

The nested linear type space reduces the number of incentive compatibility constraints

to at most pN ´ 1q, simplifying the problem significantly.

Under these regularity conditions provided by Assumptions 1, 2, and 3, our main

result extends to the general model, and the commitment payoff is always attainable

in an equilibrium of the sequential delegation game.

Theorem 3. In the nested linear type space, there exists an equilibrium of the sequential

delegation game that attains the principal’s commitment payoff as δ Ñ 1.

The main idea behind the proof is that we can divide solving for the principal-

optimal mechanism into two parts. We first establish that in any optimal mechanism,

each type’s each possible report generates the same expected payoff v for the agent.

Then, we can solve the optimization problem for a fixed value of v for each type.

Combined with the fact that the differences between payoffs are linear, the optimal

mechanism takes a very clean separating structure. The optimal mechanism can then

be replicated in equilibrium with similar strategies as in the separating equilibrium in

the two project case.

We can show with an example that our result for the nested linear type space is

not tight: there are examples of type spaces outside this class where the commitment
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payoff can be achieved in equilibrium. Recall the example from Section 4.1.1 where

there are three possible projects, N “ t1, 2, 3u, and three equally likely types in the

support of µ with S “ tt1, 2u, t2u, t2, 3uu.

Note that we are outside the linear nested type space introduced in the previous

section as the types are not nested and the payoffs are not linear. This type space can

be thought of as augmenting our two project case with a type where the bad project

is paired with an even worse project. Recall the optimal mechanism:

• From type t1, 2u, project 1 is implemented with probability one

• From type t2u, project 2 is implemented with probability 3
8
.

• From type t2, 3u, project 2 is implemented with probability one.

The structure of an equilibrium that attains the payoff from this mechanism is

similar to the separating equilibrium but it exhibits a novel signaling opportunity. The

principal always accepts project 1 and never accepts project 3. If project 3 is proposed

at t “ 0, then project 2 is accepted with certainty at t “ 1. Otherwise, project 2

is only accepted with a delay at t˚ “ mintt|δt ď 3
8
u. We should highlight that even

though project 3 is never implemented, its proposal acts as a screening device and the

agent has an opportunity to signal her type by proposing redundant projects.

5 Conclusion

In this paper, we study a dynamic principal-agent problem where the agent is privately

informed about the feasibility of projects, and the interests of the parties are not

aligned. Our main focus is on a dynamic delegation game where the informed agent

makes proposals over time and the uninformed principal has the authority to approve

without the power to commit to his future responses.

We ask how much of a disadvantage the principal is at here; he lacks proposal

power and the ability to commit to his responses to the agent’s proposals. Since the

principal can only implement the projects that are proposed, we might expect that

that the agent can easily hide principal-preferred projects by never proposing them.

Anticipating that his preferred projects may never be proposed, the principal would

in turn capitulate and accept the agent-preferred projects when they are proposed.

We show, however, that with two projects, there is always an equilibrium of the game
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that attains the optimal commitment payoff. We argue that it is in fact the inability

to make proposals that enables the principal to wait, and for costly delay to emerge as

a signalling device in equilibrium. For more than two projects, we identify sufficient

conditions on parameters under which the commitment result still holds.

Our setup has natural applications to organizational economics, specifically empire-

building by corporate managers. It is well known that managers may not always act

in the best interests of the shareholders, but rather act to increase their own influence

within the organization. Our analysis has implications for when the manager holds

verifiable private information that’s relevant to the optimal course of action for the

firm, but is motivated by empire-building. We find that the by adopting a bottom-up

approach, i.e. eliciting proposals from the manager, the CEO might be able to curb

the manager’s empire-building plans better than by issuing top-down commands to

restrict what a manager can do.

We also define a general class of delegation protocols and show that if the principal

is able to commit to his strategy, then the sequential delegation game we consider

does as well as any other protocol. This comparison with other protocols highlights

an important point. In the two project case, this commitment payoff is achieved in an

equilibrium of the sequential delegation game. Therefore there is no equilibrium of any

other protocol in our class that results is a strictly higher payoff for the principal. This

comparison further reinforces our intuition about the bottom-up approach — even

if the principal cannot commit, organizational structures that involve a bottom-up

approach might do better than a whole range of other organizational structures.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Proof. Given that qGg “ 1 and qMg ` qMb “ 1, our maximisation problem reduces to:

max
qMg ,qBbPr0,1s

µGπg ` µBqBbπb ` µMqMgπg ` µMp1 ´ qMgqπb

subject to qMgαg ` p1 ´ qMgqαb ě qbBαb

In an optimal mechanism, we must also have that qMgαg `p1´qMgqαb “ qbBαb. To see

this, suppose the inequality is strict. Let qMg
1

“ qMg`ε, and qMb
1

“ 1´qMg
1

“ qMb´ε,

where ε ą 0. For ε small enough, ICMB is still satisfied and the principal’s expected

payoff increases by εµMpπg ´ πbq. We can therefore substitute qMgαg ` p1 ´ qMgqαb “

qbBαb into our objective function, and we get

µGπg ` µBπbp1 ´ qMgp1 ´
αg

αb

qq ` µMqMgπg ` µMp1 ´ qMgqπb

“ µGπg ` µMπb ` qMgtµMpπg ´ πbq ´ µBπbp1 ´
αg

αb

qu

The only choice variable is qMg now, and whether the above expression is increasing or

decreasing in qMg depends on the sign of it’s coefficient, tµMpπg ´πbq ´µBπbp1´
αg

αb
qu.

If the coefficient is strictly positive, then the optimal mechanism has qMg “ 1. Also,

because ICMB holds with equality, we have qBb “
αg

αb
in the optimal mechanism. A bit

of rearranging gives us that tµMpπg ´ πbq ´ µBπbp1´
αg

αb
qu ą 0 is equivalent to λ ą λ˚.

Similarly, if λ ă λ˚, the optimal mechanism has qMg “ 0, and therefore qBb “ 1. If

λ “ λ˚, principal’s expected payoff is constant in qMg and therefore any qMg P r0, 1s

is optimal, with qBb again being determined by the equality of ICMB.
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A.2 Proof of Theorem 1

We first establish some notation. Recall that for any time period t, the set of all

possible period t histories is denoted by Ht, where Ht “ pN Y Hqt. The representative

period t history is denoted by ht P Ht. The action (or proposal) space of an agent

of type S at any history is given by ASphtq “ AS “ tS Y Hu, where H represents

remaining silent. An element of ASphtq is given by atS. Given a history ht, and a

proposal in pN Y Hq by the agent, the principal can either accept, or reject this

proposal.

A behaviour strategy maps histories and types into action spaces. For the agent

of type S, σSpatS|htq denotes the probability of choosing atS at history ht. For the

principal, σP pht, iq denotes the probability of accepting proposal i P N at history

ht. If at ht, agent is silent, then σP pht,Hq “ 0, as there is no project to accept.

At any history ht, we denote the probability the principal attaches to type S by

µSphtq. If, following ht, i is proposed, the updated beliefs are given by µSpht, iq for

each S, and by µSpht,Hq if the agent is silent at ht. For any t and any t
1

ă t, let

htpt
1

q P pN Y Hq be the proposal at period t
1

, along this history ht. We denote by

ht´1phtq the period t ´ 1 history obtained by removing proposal htpt ´ 1q from ht, so

that ht “ pht´1phtq, htpt ´ 1qq.

Our solution concept is Perfect Bayesian Equilibrium, as defined in Fudenberg and

Tirole (1991). We want to highlight that here, something stronger than Bayes’ Rule is

used to update beliefs following any proposal at any history. To understand this, fix

any history ht. Even if this is a history that arises with probability zero along the

equilibrium path, beliefs following a proposal i at this history are updated using Bayes’

Rule if D a type S such that µSphtq ą 0 and σSpi|htq ą 0. Beliefs are allowed to be

completely arbitrary only if given ht, the proposal made by the agent had probability

zero, according to the agent’s strategy. However, even when following a proposal i at

history ht, beliefs are allowed to be completely arbitrary, they must still have support

in tS Ď N |i P Su, i.e. the set of types that have i, because only these types can

possibly propose i. This is in contrast to models without hard evidence.

A.2.1 Pooling equilibrium:

Strategies: The principal’s strategy σP is: for any history ht, and proposal i,

σP pht, iq “ 1, i.e. at each history, the principal accepts any proposal with probability
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one. If the agent is of the empty type, then for any ht, σEpH|htq “ 1. For an agent

of type S ‰ E, let i˚ “ minti|i P Su, i.e. the most preferred project of the agent in

S. At any history ht, σSpi˚|htq “ 1, so at any history, the agent always proposes her

favorite available project with probability one.

Beliefs: Fix any ht (if t “ 0, this is the null history). (i) If the agent is silent at

ht, the beliefs are µEpht,Hq “ 1 and µSpht,Hq “ 0 for all S ‰ E. (ii) If the agent

proposes g at ht, the beliefs are µGpht, gq “ 1 and µSpht, gq “ 0 for all S ‰ E. (iii) If

the agent proposes b at ht, the beliefs are µBpht, bq “
µB

µB`µM
, and µMpht, bq “

µM

µB`µM
.

We now argue that the beliefs satisfy the requirements for PBE. At any ht, if

the agent takes a probability zero action, PBE imposes no restrictions on beliefs. So,

we only need to worry about the case where the agent’s proposal at ht has positive

probability given this history. In this case, PBE requires the beliefs to be determined by

Bayes’ Rule. At ht, silence is a positive probability action only if µEphtq ą 0, since only

type E has σEpH|htq ą 0. In this case, the belief µEpht,Hq “ 1 is precisely the one

determined by Bayes’ Rule, since µEphtq ą 0, σEpH|htq “ 1 ą 0, and σSpH|htq “ 0

for all S ‰ E. Similarly, g is a positive probability action only if µGphtq ą 0 and b is

a positive probability action only if µBphtq ą 0. By identical reasoning as before, we

can argue that in both these cases, the specified beliefs are the ones determined by

Bayes’ Rule.

Lemma 1. The strategies and beliefs described above constitute a Perfect Bayesian

Equilibrium.

Proof. We have already argued that the beliefs that we described satisfy the require-

ments for being part of a PBE. Now, we only have to argue that in the continuation

game starting at any history ht, the strategies of the principal and agent constitute a

Bayes Nash Equilibrium (BNE), given the principal’s beliefs µphtq at that history.

Fix any history ht. If the agent is silent, there is no action for the principal to

take. If the agent proposes g, then irrespective of µphtq, it is sequentially rational to

accept g, since this is the highest payoff the principal can get. If the agent proposes

b, again, the exact beliefs of the principal do not matter. Whatever the beliefs are,

they have support in tS Ď N |b P Su “ tB,Mu. So, the principal must believe with

probability one that it is a type that has b, and that therefore will propose b in the

next period, if the principal rejects this proposal (in fact, in every future period). So,

it is sequentially rational for the principal to accept this proposal too.
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For the agent, if it is of type E, it can only stay silent. If it is of type G, it again

has no profitable deviation to proposing g, as the principal will accept it if proposed.

If it is of type B or M , again, the principal will accept b if proposed, no there is no

profitable deviation to proposing b.

Lemma 2. The principal’s payoff from the pooling equilibrium is the same as his

payoff from the pooling mechanism.

Proof. Along the equilibrium path, from type G, g is proposed and accepted at t “ 0,

and from types B and M , b is proposed and accepted at t “ 0. This exactly replicates

the implementation probabilities of qGg “ 1, and QBb “ qMb “ 1 from the pooling

mechanism.

A.2.2 Separating equilibrium:

Before describing the strategies and beliefs, we define two classes of histories.

Definition. A type 1 history ht is one where there is no t
1

ă t˚pδq such that

htpt
1

q “ b. In other words, there is no t
1

ă t˚pδq such that along ht, b was proposed at

t
1

. The null history is a type 1 history.

Definition. A type 2 history ht is one where t ‰ 0 and there is a t
1

ă t˚pδq such

that htpt
1

q “ b. In other words, there is a t
1

ă t˚pδq such that along ht, b was proposed

at t
1

.

Strategies:

• The principal’s strategy σP is: At any history ht, σP pht, gq “ 1. So, g is accepted

if proposed at any history. If ht is such that t ă t˚pδq, σP pht, bq “ 0. If t ě t˚pδq,

and the history is of type 1, then σP pht, bq “ 1. If t ě t˚pδq, and the history is

of type 2, then σP pht, bq “ 0.

• If the agent’s type is E, for any history ht, σEpH|htq “ 1.

• If the agent’s type is G, for any history ht, σGpg|htq “ 1.

• If the agent’s type is B, and ht is such that t ă t˚pδq, then σBpH|htq “ 1. If

t ě t˚pδq and ht is of type 1, then σBpb|htq “ 1. If t ě t˚pδq and ht is of type 2,

then σBpH|htq “ 1.
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• If the agent’s type is M , then at h0, σpg|h0q “ 1. Now consider ht with t ą 0.

If ht is of type 2, then σMpg|htq “ 1. If ht is of type 1, and t ă t˚pδq, then

σMpH|htq “ 1. If ht is of type 1, and t ě t˚pδq, then σMpb|htq “ 1.

Beliefs:

At the null history h0:

• If the agent is silent, the beliefs are µEph0,Hq “
µE

µE`µB
and µBph0,Hq “

µB

µE`µB
.

If the agent proposes g, the beliefs are µGph0, gq “
µG

µG`µM
, µMph0, gq “

µM

µG`µM
.

If the agent proposes b, the beliefs are µMph0, bq “ 1.

• These beliefs all satisfy the conditions for PBE. The agent staying silent

and proposing g both occur with positive probability at h0, as σEpH|h0q “

σBpH|h0q “ 1 and σGpg|h0q “ σMpg|h0q “ 1, and these two cases, beliefs are

the ones determined by Bayes’ Rule. Proposing b is a probability zero action

here, thus, beliefs can be arbitrary.

At a type 1 history ht, where t ą 0:

• If the agent is silent, beliefs are µBpht,Hq “ 1. If the agent proposes g, beliefs

are µGpht, gq “ 1. If the agent proposes b, and t ă t˚pδq beliefs are µMpht, bq “ 1.

If t ě t˚pδq, beliefs are µBpht, bq “ 1.

• The beliefs are consistent with PBE. Silence is a positive probability action at

ht only if t ă t˚pδq and µBphtq ą 0 or µMphtq ą 0. This is the case only if

htpt ´ 1q “ H, and in this case beliefs are the same as the ones determined by

Bayes’ Rule. Proposing g is never a positive probability action at ht so beliefs

can be arbitrary in a PBE and we’re done.

• Proposing b is a positive probability action only if t ě t˚pδq. (1)If t “ t˚pδq, this

is the case only if htpt ´ 1q “ H. In this case, µBphtq “ 1, and σBpb|htq “ 1, so

beliefs are precisely the ones determined by Bayes’ Rule. (2) If t ą t˚pδq, then

proposing b is a positive probability event only if htpt ´ 1q “ H or htpt ´ 1q “ b.

In this case, µBphtq “ 1 and σBpb|htq “ 1, so again, the beliefs we specified are

the ones determined by Bayes’ Rule.

At a type 2 history:
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• If the agent is silent, the beliefs are µEpht,Hq “
µE

µE`µB
and µBpht,Hq “

µB

µE`µB
.

If the agent proposes g, beliefs are µMpht, gq “ 1. If the agent proposes b, beliefs

are µMpht, bq “ 1.

• The beliefs are consistent with PBE. If the agent is silent, there are two possibil-

ities. Either, htpt´ 1q “ H, in which case µEphtq “
µE

µE`µB
and µEphtq “

µE

µE`µB
,

so the beliefs that we mentioned are precisely the ones determined by Bayes’

Rule. If htpt ´ 1q “ b, or htpt ´ 1q “ g, silence is a probability zero action at ht,

and PBE allows beliefs to be arbitrary.

• If the agent proposed b at ht, irrespective of what was proposed at t ´ 1, b is a

probability zero action. This is because σMpb|htq “ σBpb|htq “ 0 at ht. So again,

PBE allows beliefs to be arbitrary. If agent proposed g at ht, g is a positive

probability action here only if htpt ´ 1q “ b, or htpt ´ 1q “ g. In this case

since µMphtq “ 1 and σMpg|htq “ 1, beliefs are precisely the ones determined by

Bayes’ Rule. If htpt ´ 1q “ H, beliefs can be arbitrary.

Lemma 3. The strategies and beliefs described above constitute a Perfect Bayesian

Equilibrium.

Proof. We have already argued that the beliefs that we described satisfy the require-

ments for being part of a PBE. We must now argue that in the continuation game

starting at any history ht, the strategies of the principal and agent constitute a Bayes

Nash Equilibrium (BNE), given the principal’s beliefs µphtq at that history.

For the principal, fix any history ht. If the agent is silent, there is no action

for the principal to take. If the agent proposes g, then irrespective of µphtq, it is

sequentially rational to accept g, since this is the highest payoff the principal can get.

If the agent proposes b, we need to consider three cases. (i) t ă t˚pδq : The principal’s

strategy is to reject b at such a history. His beliefs following a proposal of b at ht are

µMpht, bq “ 1. If the principal accepts, he gets αb, and if he rejects, he expects the

agent to propose g in the next period. So, rejection is indeed sequentially rational

if the principal is sufficiently patient. (ii) t ě t˚pδq and the history is of type 1. In

this case, if b is proposed, the principal’s beliefs are µBpht, bq “ 1 and if he rejects b,

he expects b to be proposed again in the next period. So, accepting b is sequentially

rational. (iii) t ě t˚pδq and the history is of type 2. In this case, the principal’s
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strategy is to reject b. His beliefs following a proposal of b are µMpht, bq “ 1, so the

same reasoning as case (i) follows, and rejection is sequentially rational.

For the agent, fix a history ht. If her type is E, she can only be silent at any

history. If her type is G, her strategy is to propose g, which is optimal, since the

principal would accept it. If her type is B, and (i) t ă t˚pδq, her strategy is to stay

silent. Consider a one-shot deviation where she deviates by proposing b. This proposal

would be rejected and since her strategy involves staying silent at any future period

following this rejection, therefore getting a payoff of zero, she cannot be better off by

this deviation. (ii) If t ě t˚pδq and the history is of type 1, proposing b is optimal since

it would be accepted and αb is the highest payoff the agent can get. (iii)If t ě t˚pδq

and the history is of type 2, silence is optimal. Consider a one-shot deviation where

the agent proposes b instead. It would be rejected, and the agent’s strategy is to stay

silent in each period that follows. So, this is not a profitable deviation.

If the agent’s type is M , at h0, her strategy is to propose g. Consider the one-shot

deviation where she proposes b instead. It will be rejected and she will propose g at

t “ 1, which will get accepted. Clearly, this is not profitable, as she can propose g

at t “ 0 and it will get accepted. If the one-shot deviation involves silence at t “ 0,

her strategy then is to stay silent till t˚pδq, at which point she proposes b can it is

accepted. So her payoff is δt
˚pδqαb which is ď αg. So, this deviation is not profitable

either. We can similarly rule out deviations at other histories.

A.3 Induced Social Choice Function

We provide the details of collapsing the probability of various outcomes involving i

into a single probability here.

Fix a protocol, a strategy the principal has committed to, and a best response of

the agent. Let pi, tq denote the outcome that project i is implemented (proposed and

accepted) at t. No project ever being implemented is also a possible outcome. The

proof proceeds in two steps. We first show that the strategy and the best response

induce, for any type S, a probability distribution over outcomes. We then condense

these probabilities to arrive at the induced SCF.

Fix a type S and a project i P S. Recall that at any history ht, the proposer

is P phtq. Let xpi|htq be the probability with which, according to P phtq’s strategy,
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the proposer P phtq offers Ophtq P Ophtq such that i P Ophtq at ht. Let ypht, iq be

the probability that the other party, who is not the proposer, accepts i in the offer

Ophtq. We define the probability of any history inductively. We denote period 0

history by h0, so at t “ 1, for any h1 “ ph0, iq, where i P S Y tHu. We define

νph1q “ xpi|h0qp1´ yph0, iqq, which is just the probability that i was proposed at t “ 0

but not accepted, and thus the probability of history h1 at t “ 1. This is clearly a

number in r0, 1s. Given that we have defined νphtq @ ht1 , t1 ď t, and any ht`1 “ pht, iq

for some i P S Y tHu, we have that νpht`1q “ νphtqxpi|htqp1 ´ ypht, iqq.

We define the probability of outcome pi, tq as

pSpi, tq :“
ÿ

htPHt

νphtqxpi|htqypht, iq

for all i P S. It can be verified that the sum of probabilities for all outcomes in which

a project is implemented,
8
ÿ

t“0

ÿ

iPS

pSpi, tq ď 1,

where the probability of the outcome that no project is ever implemented is

1 ´

8
ÿ

t“0

ÿ

iPS

pSpi, tq.

Thus, for any type S, the strategy and best response induce a probability distribution

over outcomes.

We now construct the corresponding Induced SCF. For any S 1, probability of

implementation of i P S 1 is

f I
S1piq “

8
ÿ

t“0

δtpS1pi, tq.

A.4 Proof of Theorem 2

Proof. Fix a static IC mechanism. In this mechanism, any report S “ ti1, i2, . . . , imu,

is mapped to implementation probability qSk for project ik, and αi1 ă αi2 . . . ă αim .

We first define, for any S,

ySpδq :“ mint
1

qS1 `
qS2

δ
` . . . qSm

δm´1

, 1u
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and let ypδq “ min ySpδq.

We now construct the corresponding strategy in the sequential delegation game.

According to this strategy:

• At any t P t0, 1, . . . , N ´ 1u, the principal accepts no proposal irrespective of

history.

• At every history where at any t P t0, 1, . . . , N ´ 1u the agent proposed anything

other than project t ` 1 or H, the principal rejects any proposal.

• Fix a history where the set of projects proposed from t “ 0 until t “ N ´ 1 is

S 1 “ ti1, i2, . . . , i
1
mu, and each project i was proposed at t “ i ´ 1. We call this

history hS1

N . Let qS11, qS12, . . . qS1m1 be the probabilities of implementation of

each project in S 1, when S 1 is reported in the mechanism we have fixed.

• At hS
N , at t “ N , if i1 is proposed, the principal accepts with probability ypδqqS1.

• If agent does not propose i1 at hS
N , the principal rejects any proposal at any

t ą N .

• At the history phS
N , i1, i2 . . . , ik´1q if the agent proposes ik, it is accepted with

probability ypδqqSk

δk´1pqS1`
qS2
δ

`...`
qSpk´1q

δk´2 q
. If agent does not propose ik at phS

N , i1, i2, . . . , ik´1q,

the principal rejects the current proposal and any proposal at any future period

t.

• Period N ` pm1 ´1q onward (given that history until period N is hS1

N ), no project

is accepted, irrespective of history.

Note that since the set of projects proposed in the first N periods is S 1, it is

optimal for the agent to report projects in decreasing order of the principal’s preference

in the next m1 periods. If the agent stays silent at any of the m1 periods that follow, or

recommends a project out of turn, the principal never accepts any project again. Let

the expected payoff from reporting S 1 in the mechanism be ES1 . It is easy to see that

if the agent proposes all projects she has in the first N periods, she gets an expected

payoff of δNypδqES1 . Thus, since the mechanism was IC, it is indeed a best response

for the agent to propose all projects she has in the first N periods. The principal’s

payoff from this strategy and best response is therefore the product of δNypδq and
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the expected payoff from the mechanism. It can be easily verified that ypδq Ñ 1 as

δ Ñ 1. So, the principal’s payoff from this strategy approaches the payoff from the

mechanism as δ Ñ 1.

We now provide an example that shows that with certain delegation protocols, the

ability to commit to a strategy may not be enough to attain the commitment payoff

from the optimal static mechanism. Recall the delegation protocol and example in

Section 4.2 where there are three possible projects, N “ t1, 2, 3u, and three equally

likely types in the support of µ with S “ tt1, 2u, t2u, t2, 3uu.

Proof. Suppose there is a commitment strategy of the principal in this alternative

game, and a best response of the agent that attains the payoff from the optimal

mechanism. This commitment strategy and best response give rise to an induced

SCF. Recall from the construction of the induced SCF, that for any type S, and any

i P S, we have f I
S1piq “

ř8

t“0 δ
tpS1pi, tq. We therefore must have that f I

2,3p2q Ñ 1 and

f I
1,2p2q Ñ 3

8
as δ Ñ 1. Recall that a history here is simply a sequence of restriction

sets that have been rejected by the agent. Now, for type t2, 3u, consider any t, and

history ht at which 2 is implemented with positive probability. At this history, it must

be that 2 P Ophtq and this is accepted by t2, 3u with positive probability. But, even

t1, 2u can accept 2 at this history. Moreover, since the history involves a sequence of

rejections, and the ability to reject is not type-dependent, any such history can also

be reached when the type is t2, 3u. This contradicts the fact that f I
1,2p2q Ñ 3

8
.

A.5 Proof of Theorem 3

Proof. The proof proceeds in three steps. Broadly, we first show that in solving for the

optimal mechanism, the optimization problem can be divided into two parts. Then we

show that if the solution to the second part corresponds to a value in a certain set, the

payoff from the optimal mechanism can be replicated in equilibrium. Lastly, we show

that the solution to the second part must always correspond to a value in this set.

Let the set of types be tS1, S2 . . . SMu where for any i ă i1, we have that Si1 Ă Si.

For any type Si, let µpSiq “ µi and let qi,j be the probability of implementation of

j P Si in the mechanism when the report is Si. Let the expected value to the agent,

corresponding to any report Si, be denoted by Ei, where Ei :“
ř

jPSi
qi,jαj. Observe
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that due to type-dependent message spaces and the support of µp.q, the IC constraints

here boil down to pM ´ 1q inequalities:

E1 ě E2, . . . ě EM ,

and we refer to the inequalities Ei`1 . . . ě EM as the IC constraints below i and the

inequalities E1 ě E2 . . . ě Ei as the IC constraints above i.

Lemma 4. In any optimal mechanism, any report must generate the same expected

payoff for the agent. Formally, for any two reports Si and Si1, it must be that Ei “ Ei1.

Proof. We prove this by contradiction. Suppose, in an optimal mechanism there are

i, i1 such that Ei ‰ Ei1 . Without loss, let i ă i1. This implies, given the nature of the

support of µp.q, that Si1 Ă Si. Since the optimal mechanism is IC, it must be that

Ei ě Ei1 , and since Ei ‰ Ei1 , we have that Ei ą Ei1 . This in turn implies that we

can find consecutive types k, k ` 1 such that i ď k ă k ` 1 ď i1 and Ek ą Ek`1. So

without loss, let i1 “ i ` 1. Let i˚ be the lowest indexed project in Si.

• Case 1: Corresponding to report Si, qi,j ą 0, for some j ą i˚.

In this case, consider the following perturbation: Let q1
i,j “ qi,j ´ ε and

q1
i,i˚ “ qi,i˚ ` ε. Now, E 1

i “ Ei ´ εpαj ´ αiq ă Ei. The ε in the perturba-

tion is small enough that E 1
i ą Ei`1. Other than this change, all allocation

probabilities corresponding to all other reports are unchanged, relative to the

original mechanism. This new mechanism is IC, because since the original

mechanism was IC, and we have reduced Ei, all IC constrains above i still hold.

The inequality between E 1
i and Ei`1 is preserved, so this IC still holds. All IC

constraints below i still hold, clearly. Thus we have constructed another IC

mechanism in p˚q that gives a strictly higher expected payoff to the principal,

as his payoff from type Si increases by εpπi˚ ´ πjq. Thus, the mechanism we

started out with cannot be optimal.

• Case 2: Corresponding to report Si, qi,j “ 0, for every j ą i˚.

We can again construct an IC mechanism in p˚q that gives strictly higher

expected payoff to the principal. Since qi,j “ 0, for every j ą i˚, we have

that Ei “ qi,i˚αi˚ ď αi˚ , as only i˚ might have positive allocation probability

in Si. Also, Ei ą Ei`1, so it must be that
ř

j qi`1,j ă 1. This is because all
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projects in Si`1 have weakly higher payoff for the agent than αi˚ , so if their

allocation probabilities sum up to one, we would have Ei`1 ě αi˚ ě Ei, which

cannot be. So, since
ř

j qi`1,j ă 1, in particular, qi`1,pi`1q˚ ă 1. Consider the

following perturbation: let q1
i`1,pi`1q˚ “ qi`1,pi`1q˚ ` ε where ε is small enough

that E 1
i`1 “ Ei`1`εαpi`1q˚ ă Ei, so the IC constraint between i, i`1 is preserved.

Everything else is unchanged with respect to the original mechanism. Clearly,

all IC constraints above i hold, and all below i hold as well as we increased Ei`1.

This mechanism gives the principal a higher expected payoff since the payoff

from type Si`1 has increased. So, the mechanism we started out with cannot be

optimal.

This completes the proof of our claim that in any optimal mechanism, any report

must generate the same expected payoff for the agent.

Now that we have shown this, the principal’s optimization problem (finding the

payoff-maximizing mechanism among all IC mechanisms in p˚q) can be divided into

two parts. First, for any expected value v, find the optimal mechanism corresponding

to this v; the mechanism that maximizes the principal’s payoff when each report

generates an expected payoff of v for the agent. Then, maximize the principal’s

payoff over the possible values of v, i.e. find the values of v the optimal mechanism

corresponding to which generates the highest expected payoff for the principal. Our

aim is not to solve for the optimal mechanism, but rather show it is always the case

that the principal’s expected payoff from the optimal mechanism can be attained in

equilibrium. We do this in the steps that follow.

Lemma 5. In any optimal mechanism, it cannot be that v ą αM˚, where M˚ is the

lowest indexed project in SM .

Proof. Suppose in the optimal mechanism, v ą αM˚ . Then it must be that there is a

project j P SM such that j ą M˚, since the expected value that type SM gets is ą αM˚ .

So, we can perturb this mechanism as follows:q1
M,j “ qM,j ´ ε, and q1

M,M˚ “ qM,M˚ ` ε.

Clearly, the new mechanism is IC as there is no IC below M . And it results in higher

expected payoff for the principal.

Lemma 6. Let the set of all projects in types tS1, S2 . . . SMu be tα1, α2, . . . , αNu,

where α1 ă α2 . . . αN . For any v P tα1, α2, . . . , αNu, such that v ď αM˚, there exists
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an equilibrium of the sequential delegation game in which the principal attains the

payoff from the optimal mechanism corresponding to v, as δ Ñ 1.

Proof. Recall that for any project i, π1´πi

αi´α1
“ K where K is a constant. Let v “ αk ă

αM˚ . For each Si, we solve the following problem:

max
tqi,j |jPSiu

ÿ

jPSi

qi,jπj

subject to
ÿ

jPSi

qi,jαj “ αk

(1)

There are two possibilities: Either i˚ ă k or i˚ ě k. If i ě k, the solution is

q˚
i,i˚ “

αk

αi
, because we cannot do better than assigning positive probability to only

the principal-favorite project in Si, which is i˚, and since i˚ ě k ùñ αi ě αk, we

can do so.

Now, let us consider the case where i ă k. Here, αi˚ ă αk, so we can no

longer assign positive probability only to i˚ in Si. In this case, any solution to the

above optimization problem must satisfy
ř

jtq
˚
i,j|j P Siu “ 1. If

ř

tq˚
i,j|j P Siu ă 1,

then in particular q˚
i,i˚ ă 1, and q˚

i,j ą 0 for some j1 ą i˚, because we must have
ř

jPSi
q˚
i,jαj “ αk. Fix any such j1 ą i˚, such that q˚

i,j1 ą 0. We can now perturb

the allocation probabilities as follows: Let q˚˚
i,j1 “ q˚

i,j1 ´ ε, q˚˚
i,i˚ “ q˚

i,i˚ ` ε
αj

α˚
i
, and

q˚˚

i,j2 “ q˚

i,j2 @ j
2

‰ ti˚, ju. It is straightforward to check that
ř

jPSi
q˚˚
i,jαj “ v, the

principal’s expected payoff is strictly higher, and for ε small enough,
ř

jPSi
q˚˚
i,jαj ď 1.

So, if i ă k, we must have
ř

tq˚
i,j|j P Siu “ 1. The constraint in the optimization

problem can be thus be rewritten substituting qi,i˚˚ “ 1 ´
ř

tjPSi|jăi˚˚u
qi,j, where i˚˚

is the highest indexed project in Si.

ÿ

tjPSi|jăi˚˚u

qi,jpαi˚˚ ´ αjq “ αi˚˚ ´ αk (2)

We can also, after the same substitutions, rewrite the objective function and get:

πi˚˚ `
ÿ

tjPSi|jăi˚˚u

qi,jpπj ´ πi˚˚q,
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which, after substituting (2), is just equal to

πi˚˚ `
ÿ

tjPSi|jăi˚˚u

qi,jKpαi˚˚ ´ αjq “ πi˚˚ ` pαi˚˚ ´ αkqK

Observe that the last expression is a constant independent of allocation prob-

abilities. So, any allocation probabilities that satisfy
ř

tqi,j|j P Siu “ 1 and
ř

jPSi
qi,jαj “ αk, solves the optimization problem. In particular, qi,k “ 1 solves

(1) when i ă k.

To sum up, for any v P tα1, α2, . . . , αNu, an optimal mechanism corresponding to

v is as follows:

q˚
i,i˚ “

αk

α˚
i

, q˚
i,j “ 0 @ j ą i˚, if i˚

ą k,

and

q˚
i,k “ 1, q˚

i,j “ 0 @ j ‰ k, if i˚
ď k

We now construct an equilibrium that replicates the payoff from the above mech-

anism. The construction is very similar to our separating equilibrium from the

two-project case. Fix v “ αk. Consider the equilibrium where on path, at t “ 0, all

types that have project k report it, and this proposal is accepted right away. For every

Si such that i˚ ą k, there exists a threshold t˚
i˚pδq, such that type Si, which does not

have project k, proposes i at t˚
i , which is then accepted by the principal. We define

this threshold inductively:

t˚
k`1pδq :“ mintt : αk ě δtαk`1u,

and, given that we have defined t˚
k`j, we define t˚

k`j`1 as follows:

t˚
k`j`1pδq :“ mintt : δt

˚
k`jpδqαk`j ě δtαk`j`1u

We omit the details of the strategies, as they are very similar to the separating

equilibrium. But intuitively, this on path behavior can be supported in equilibrium as

if the principal sees a proposal i˚ ą k before t˚
i˚ , his off path belief is that it is type S1

with probability one, and if this proposal is rejected, S1 will propose 1 in the next

period. The thresholds are such that any type that does not have k will find it optimal

to propose the principal’s favorite project that it has, at the appropriate threshold.

Note that in this proof we have implicitly assumed that all types where i˚ ă k
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have project k. In case they do not, this construction does not work. However, the

next Lemma will show that we do not have to worry about these cases; if such an

αk “ v in the optimal mechanism, we can find another v1 that attains same or strictly

higher payoff for the principal, such that the optimal mechanism corresponding to

this v1 is implementable in equilibrium.

We have thus shown that every optimal mechanism must have some v which

is the expected payoff to each type of the agent, and if the optimal mechanism

has v˚ P tα1, α2, . . . , αNu, there always exists an equilibrium where the principal

attains the payoff from the optimal mechanism as δ Ñ 1. We now show, in the next

lemma, that there is always a v P tα1, α2, . . . , αNu such that the optimal mechanism

corresponding to v is indeed optimal. This would complete our proof that commitment

payoff can be attained for this case of nested types.

Lemma 7. For any v such that v P pαk, αk`1q for some k P t1, 2 . . . N ´ 1u, either v

cannot be part of the optimal mechanism, or there exists v1 P tα1, α2 . . . αNu such that

the principal’s payoff from the optimal mechanism corresponding to v1 is the same as

his payoff from the optimal mechanism corresponding to v.17

Proof. Let v P pαk, αk`1q for some k P t1, . . . , Nu. The principal’s objective is to

maximize his expected payoff by choosing implementation probabilities for each type:

max
ÿ

jěi˚

qi,jπj subject to
ÿ

jěi˚

qi,jαj “ v, @i P t1, . . . ,Mu

For all types Si with i˚ ě k ` 1, the optimal mechanism assigns qi,i˚ “ v
αi˚

ă 1

and qi,j “ 0 for all other j ą i˚.

For the rest of the types Si with i ď k ` 1, as we argued in Lemma 6, we have
ř

j qi,j “ 1. Since given the constraint that the agent’s expected payoff equals v, any

randomization is optimal, we consider one particular randomization as part of the

optimal mechanism.

An optimal mechanism that corresponds to the expected value v P pαk, αk`1q is as

follows:

17The perturbations that we construct here will also work if v “ αk sor some k butt all types
where i˚ ă k do not have k.
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• Consider i “ minti1|i1˚ ă k ` 1u. In this case, pi ` 1q˚ is the lowest indexed

project of the type Si`1, so it must be that pi` 1q˚ ě k` 1. Also all types above

pi ` 1q will have both i˚ and i˚ ` 1.

• for all types above i, only projects i˚ and i˚ ` 1 are implemented with positive

probability, with the appropriate mixture to provide the expected payoff of v,

Let these probabilities be qi˚ and qpi`1q˚ .

• for all types below i, only the project with the lowest index is implemented with

positive probability.

We now argue that there exists some v1 such that there is an IC mechanism in

which each type of the agent gets v1 and the principal gets a strictly higher payoff

than the mechanism we describe above. Consider the following perturbation:

• for all types such that lowest indexed project is ă k ` 1, implement pi ` 1q˚

with probability qpi`1q˚ ´ ε and i˚ with probability qi˚ ` ε;

• for all types such that lowest indexed project is ě k ` 1 , implement this lowest

indexed project i1 with probability qi,i1 ´
εpαpi`1q˚ ´αi˚ q

αi1
.

Now the gain for the principal is

ÿ

i1ďi

µi1εpπi˚ ´ πpi`1q˚q

and the loss is

ÿ

i1ąi

µi

εpαpi`1q˚ ´ αi˚q

αi1

πi1 .

We can see that ϵ gets canceled out, and the comparison only depends on the parame-

ters, probabilities of the types and the payoffs.

Either the gain is greater or the loss, or they are exactly equal. If the gain is

greater than the loss, then the perturbed mechanism is an IC mechanism where the

principal is strictly better off, and the original mechanism cannot be optimal. If the

loss is greater than the gain, then we can reverse the signs of the perturbation and

achieve an IC mechanism where the principal is strictly better off again, making the

previous mechanism not optimal. Finally, if the gain and the loss are exactly the same,
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then any perturbation would result in the same expected payoff for the principal. In

this case, we can perturb the mechanism such that the expected payoff for all types

is αk`1 and this would be an optimal mechanism as well. In addition, this optimal

mechanism can be implemented in an equilibrium of the game as established in Lemma

(6).
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